Complete characterizations of local weak sharp minima with applications to semi-infinite optimization and complementarity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak sharp minima in multiobjective optimization

We extend some necessary and sufficient conditions for strict local Pareto minima of orderm obtained by Jiménez (2002) to the case of weak ψ-sharp local Pareto minima, i.e., to the case when the local solution is not necessarily unique.

متن کامل

Equivalent properties of global weak sharp minima with applications

* Correspondence: [email protected] Department of Mathematics, School of Science, Shandong University of Technology, Zibo, 255049, China Full list of author information is available at the end of the article Abstract In this paper, we study the concept of weak sharp minima using two different approaches. One is transforming weak sharp minima to an optimization problem; another is using conju...

متن کامل

On weak sharp minima in vector optimization with applications to parametric problems

In the paper we discuss the concepts of weak sharp solutions to vector optimization problems. As an application we provide sufficient conditions for stability of solutions in perturbed vector optimization problems.

متن کامل

Weak Sharp Minima in Set-Valued Optimization Problems

and Applied Analysis 3 x0, y0 ∈ L StrD F, S resp., x0, y0 ∈ LW MinD F, S , if there exists a neighborhood U of x0 in X such that y0 ∈ StrD F U ∩ S ( resp., y0 ∈ W minD F U ∩ S ) , that is, ∀x ∈ S∩U, F x − y0 ∩ −D\{0} ∅ resp. ∀x ∈ S∩U, F x − y0 ∩ − intD ∅. 2.4 We will say that x0, y0 is a global strict global weak minimizers when U X. The set of all global strict minimizers resp., weak minimizer...

متن کامل

Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation

In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2012

ISSN: 0362-546X

DOI: 10.1016/j.na.2011.05.084